S0040-4039(96)00237-7

Remote Substituent Control of the Regioselectivity of the Aryl- and Vinylpalladation of 7-Oxabicyclo[2.2.1]heptenes.

Christian Montalbetti, Monique Savignac and Jean-Pierre Genêt*

Laboratoire de Synthèse organique associé au CNRS, Ecole Nationale Supérieure de Chimie de Paris, 11, rue Pierre et Marie Curie, F 75231 Paris Cedex 05, France

Jean-Michel Roulet and Pierre Vogel*

Section de chimie de l'Université de Lausanne, BCH, CH 1015 Lausanne-Dorigny, Switzerland.

Abstract: Pd-catalyzed arylations of 2-exo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate and 7-oxabicyclo[2.2.1]hept-5-en-2-one are regio- and stereoselective giving products of $H_2(HCOOH)$ and $Me_3SiC\equiv CH$ coupling in which the aryl group (4-MeOC₆H₄) prefers the exo position of C(5) whereas the Pd-catalyzed vinylations with methyl-2-iodoacrylate prefers the exo position of C(6) center.

Enantiomerically pure 7-oxabicyclo[2.2.1]hept-5-en-2-yl derivatives (+)-1 and (+)-2 ("naked sugars of the first generation")¹ are useful chirons in the synthesis of natural products ² and of compounds of biological interest.³ The stereoselective introduction of a carbon residue at C(3) can use aldolisation⁴ and alkylation, at C(5) or C(6), radical additions.^{2a,b, 5,6} The Heck Pd-catalyzed reactions⁷ can be conducted, as we have shown,⁸ under mild conditions in water. The carbapalladation of bicyclic alkenes can be followed by trapping the alkylpalladium intermediates with alkynes, a process investigated by Larock et al.⁹ and by Torii et al.¹⁰ This powerful tandem reaction could increase the synthetic potential of the "naked sugars" if it could be regioselective (3 \rightarrow 4 + 5). We report that the regioselectivity of the aryl- and vinylpalladations of (±)-1b and (±)-2 is controlled by the remote substituents at C(2). Interestingly, the vinylations with methyl (Z)-2-iodoacrylate have opposite regioselectivity than the Pd-catalyzed arylations. The intermediate alkylpalladium derivatives were trapped with HCOOH or with Me₃SiC=CH, the latter process allowing one the introduce two different *exo*-carbon functionalities at C(5) and C(6) of the "naked sugar" with good regioselectivities (see Table 1.2).

The treatment of the Diels-Alder adduct of furan to 1-cyanovinyl acetate (1b)¹¹ with p-methoxyiodobenzene (3 eq.), Et₃N (2.5 eq.), HCOOH (3eq.), Ph₃P (0.4 eq.)¹² and Pd(OAc)₂ (0.1 eq.) in THF (40°C, 36 h) gave a 74% yield of a 84:16 mixture of products of exo arylation 6 and 7.¹³ When HCOOH was replaced by trimethylsilylacetylene (3 eq.) and adding CuI (0.1 eq., 40°C, 8 h), a 83:17 mixture of products of anionic coupling 8^{14} and 9 (43%) was obtained together with unreacted 1b (30%) and MeOC₆H₄C=CSiMe₃ (ca.

25%). The latter reaction could be run in CH₃CN/H₂O using TPPTS (0.1 eq., trisodium triphenylphosphine-metatrisulfonate) instead of Ph₃P and (i-Pr)₂NEt (2.5 eq.) instead of Et₃N without any CuI promoter. ^{8a} This led to a 79:21 mixture of 8 and 9 with a 50% yield (after separation by flash chromatography). Under similar conditions (Table 2), the arylpalladation of enone (±)-2 provided a 80:20 mixture of 10¹⁵ and 11 (66%, trapping with HCOOH) and a 78:22 mixture of products of three component coupling 12 and 13 (73%, trapping with Me₃SiC≡CH in THF). ¹⁶

Table 1. Carbapalladation of bicyclic alkene 1b

	Tuest 1. Calculation of they end and the									
Iodide	Trapping agent	Catalyst	Conditions	Products	(Yield) Product ratio					
	OMe ≡ A		A	R CN +	Ar CN					
A +	HCOOH (3eq.)	10% Pd(OAc) ₂ 40% PPh ₃	2.5 eq. NEt ₃ THF, 40°C	5 4 3 OAc 6 R = H	ŌAc 7 (74%) 84:16					
A +	TMSC≡CH (3eq.)	idem	+ CuI (10%)	$8 R = Me_3SiC \equiv C$	9 (43%) 83:17					
A +	TMSC≡CH (3eq.)	5% Pd(OAc) ₂ 10%TPPTS	2.5 eq. (<i>i</i> -Pr) ₂ NEt H ₂ O/CH ₃ CN, 40°C	8	9 (50%) 79:21					
1	COOMe = B		E	R CN + F	E=COOMe					
B +	HCOOH (3eq.)	10% Pd(OAc) ₂ 40% PPh ₃	2.5 eq. NEt ₃ THF, 50°C	ÖAc 14 R = H	Õ Ac 15 (49%) 26:74 ^{a)}					
B +	TMSC≡CH (3eq.)	idem	+ CuI (10%)	16 R = Me ₃ SiC≡C	17 (50%) 25:75 ^{b)}					

a) 14 was a 1:1 mixture of the (E)- and (Z) acrylate; 15 was a 97:3 mixture of the (E)- and (Z)-acrylate b) separated by flash chromatography on silica gel; only (E)-acrylates.

Table 2. Carbapalladation of bicyclic alkene (±)-2

Iodide	Trapping agent	Catalyst	Conditions	Products	(Yield) Product ratio
	OMe ≡ A				Ar
A + I	HCOOH (3eq.)	10% Pd(OAc) ₂ 40% PPh ₃	2.5 eq. NEt ₃ THF, 40°C	10 R = H	11 (66%) 80:20
A + 7	ΓMSC≡CH (3eq.)	idem	+ CuI (10%)	$12 R = Me_3SiC = C$	C 13 (73%) 78:22
A + 1	ΓMSC≌CH (3eq.)	5% Pd(OAc) ₂ 10%TPPTS	2.5 eq. $(i-Pr)_2$ NEt H_2 O/C H_3 CN, 40 °C	12	13 (60%) 75:25
\	COOMe ≡ B		E	P 0 + R	E=COOMe
B + I	HCOOH (3eq.)	10% Pd(OAc) ₂ 40% PPh ₃	2.5 eq. NEt ₃ THF, 50°C	18 R = H	19 (49%) 54:46 ^{a)}
B + 7	ΓMSC≡CH (3eq.)	idem	+ CuI (10%) 60°C	20 R = Me ₃ SiC≡C	21 (67%) 40:60

a) 18 was a 63:37 mixture of (E)- and (Z)-acrylate; 19 was pure (E)-acrylate

When the bicyclic alkene 1b was treated with methyl (Z)-2-iodoacrylate (3 eq.), HCOOH (3 eq.), Et₃N (2.5 eq.), PPh₃ (0.4 eq.) and Pd(OAc)₂ (0.1 eq.) in THF (50°C, 12 h) a 26:74 mixture of the products of exo

vinylation 14 and 15 (49%) was obtained. Under similar conditions and using Me₃SiC \equiv CH instead of HCOOH, the products of vinylation and acetylenation 16 and 17¹⁷ were obtained with the same regioselectivity (Table 1). With enone (\pm)-2 (Table 2) the same type of products were observed with somewhat lower regioselectivities. The vinylation coupled with the hydrogenation (HCOOH) gave a 54:46 mixture of (E)-acrylates 18 and 19 (49%). As for the vinylation of 1b that gave 14 + 15, incomplete (Z) \rightarrow (E) isomerisation of the acrylate moieties of 18 + 19 was seen. Using Me₃SiC \equiv CH as trapping agent, the vinylation of (\pm)-2 with methyl (E)-2-iodoacrylate provided a 40:60 mixture of 20 and 21 (67%). All the compounds 6-21 were fully characterized by their spectral data and their structures were established by their 2D-NOESY ¹H-NMR spectra (400 MHz).

Steric factors are not expected to play a role on the regioselectivity of the carbapalladations of 1b and 2 since the *exo* face of these bicyclic alkenes interact with the Pd complexes. Both the cyanoacetate and carbonyl moieties act as remote electron-withdrawing groups ¹⁹ and this favors the arylpalladations of C(5), the center the most remote from them. ⁷ The reversal of the regioselectivity between the aryl and vinylpalladations cannot be explained before it is established whether the product determining step is the β-insertion from the alkene-Pd complexes to the corresponding alkyl-Pd species or the subsequent quenching of the latter species with HCOOH or Me₃SiC≡CH. Alternatively, the regioselectivities could parallel the relative stabilities of these intermediates. Work is underway in our laboratories to put these hypotheses on firmer ground. Our preliminary results, however, demonstrate that remote substituents can control the regioselectivity of Heck carbapalladations and can be used to construct asymmetric polyfunctional systems. All the compounds described here can be prepared optically pure in both their enantiomeric forms. ¹

Acknowledgments. This work was supported by the European COST D2 Program (OFES, Bern) and by a MESR grant to C. M. (France).

- Vieira, E.; Vogel, P. Helv. Chim. Acta 1983, 66, 1965-1871; Black, K. A.; Vogel, P. Ibid. 1984, 67, 1612-1615; Reymond, J.-L.; Vogel, P. Tetrahedron: Asymmetry 1990, 1, 729-736; Saf, R.; Faber, K.; Penn, G.; Griengl, H. Tetrahedron 1988, 44, 389-392; Ronan, B.; Kagan, H. B. Tetrahedron: Asymmetry 1991, 2, 75-90; Corey, E. J.; Lob, T.-P. Tetrahedron Lett. 1993, 34, 3979-3982.
- [2] See e.g.: a) Vionnet, J.-P.; Renaud, P. Helv. Chim. Acta 1994, 77, 1781-1790; b) Cossy, J.; Ranaivosata, J.-L.; Bellosta, V. Tetrahedron Lett. 1994, 35, 1205-1208; 1995, 36, 2067-2070; c) Baudat, A.; Vogel, P. Helv. Chim. Acta 1994, 77, 1500-1504; Vogel, P. Bull. Soc. Chim. Belg. 1990, 99, 395-439; d) Arjona, O.; de Dios, A.; Plumet, J.; Saez, B. J. Org. Chem. 1995, 60, 4932-4935.
- [3] See e.g.: Chen, Y.; Vogel, P. J. Org. Chem. 1994, 59, 2487; Vogel, P. Chim. Oggi 1992, 9-15; Ferritto, R.; Vogel, P. Tetrahedron Lett. 1995, 36, 3517-3518.
- [4] See e.g.: Emery, F.; Vogel, P. J. Org. Chem. 1995, 60, 5843-5854; Kraehenbuehl, K.; Vogel, P. Tetrahedron Lett. 1995, 36, 8595-8598.
- [5] Renaud, P.; Vionnet, J.-P. J. Org. Chem. 1993, 58, 5895-5896.
- [6] Renaud, P.; Vionnet, J.-P.; Vogel, P. Tetrahedron Lett. 1991, 32, 3491-3494; See also: Vionnet, J.-P.; Schenk, K.; Renaud, P. Helv. Chim. Acta 1993, 76, 2490-2499.
- [7] Heck, R. F. Acc. Chem. Res. 1979, 12, 146-151; de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379-2411; Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2-7.
- [8] Genêt, J. P.; Blart, E.; Savignac, M. Synlett 1992, 9, 715-717; see also: Casalnuovo, A. L.; Calabrese, J. C. J. Am. Chem. Soc. 1990, 112, 4324-4330; Burnagin, N. A.; More, P. G.; Beletskaya, I. P. J. Organomet. Chem. 1989, 371, 397-401.

- [9] Larock, R. C.; Babu, S. Tetrahedron Lett. 1985, 26, 2763-2764; Larock, R. C.; Narayanan, K.; Carlson, R. K.; Ward, J. A. J. Org. Chem. 1987, 52, 1364-1366 and earlier papers; see also: Castellani, M.; Chiusoli, G. P. Tetrahedron Lett. 1982, 23, 4517-4520; Castellani, M.; Chiusoli, G. P.; Mari, A. O. Organomet. Chem. 1984, 275, 129-138.
- [10] Torii, S.; Okumoto, H.; Kotani, T.; Nakayasu, S.; Ozaki, H. Tetrahedron Lett. 1992, 33, 3503-3506; Torii, S.; Okumoto, H.; Ozaki, H.; Nakayasu, S.; Tadokoro, T.; Kotani, T. Ibid. 1992, 33, 3499-3402.
- [11] Vieira, E.; Vogel, P. Helv. Chim. Acta 1982, 65, 1700-1706.
- [12] Ph₃P reduces Pd(OAc)₂ into Pd(O) species: Amatore, C.; Jutand, A.; M'Barki, M. A. Organomettalics 1992, 11, 3009-3013.
- [13] Data for 6: 1 H-NMR (200 MHz, CDCl₃) 3 H: 7.17-7.29, 6.83-6.90 (2m, 4 H), 5.26 (d, 3 J=5.4, HC(1)), 4.58 (d, 3 J=5.7, HC(4)), 3.82 (s, MeO), 2.95 (dd, 3 J=4.8, 3 J=9.0, H_{endo}C(5)), 2.59 (dd, 2 J=13.8, 3 J=5.7, H_{exo}C(3)), 2.43 (dd, 2 J=13.6, 3 J=9.0, H_{endo}C(6)), 2.23 (s, OAc) 2.01 (d, 2 J=13.8, H_{endo}C(3)), 1.84 (ddd, 2 J=13.6, 3 J=5.4, 3 J=4.8, H_{exo}C(6)); HRMS Calcd for C₁₆H₁₇O₄N: 287.11575; Found: 287.11570. Data for 7: 1 H-NMR (200 MHz, CDCl₃) 3 H: 7.16-7.22, 6.84-6.90 (2m, 4 H), 4.97 (s, HC(1)), 4.86 (m, HC(4)), 3.81 (s, MeO), 3.27 (dd, 3 J=5.3, 3 J=8.8, H_{endo}C(6)), 2.76 (m, H_{exo}C(3)), 2.26 (s, OAc), 2.19 (m, H_{endo}C(5)), 1.92 (d, 2 J=13, H_{endo}C(3)), 1.78-1.89 (m, H_{exo}C(5)).
- [14] Data for 8: m.p. 145-148°C; ¹H-NMR (200 MHz, CDCl₃) δ_{H} : 7.2, 6.8 (2m, 4 H), 5.16 (s, HC(1)), 4.77 (d, ${}^{3}J$ =5.9, HC(4)), 3.79 (s, MeO), 3.52 (d, ${}^{3}J$ =8.9, H_{endo}C(6)), 3.21 (d, ${}^{3}J$ =8.9, H_{endo}C(5)), 2.82 (dd, ${}^{2}J$ =14, ${}^{3}J$ =5.9, H_{exo}C(3)), 2.22 (s, OAc), 1.94 (d, ${}^{2}J$ =14, H_{endo}C(3)), 0.01 (s, Me₃Si); Anal Calcd for C₂₁H₂₅O₄SiN: C 65.77, N 3.65, H 6.57; Found: C 65.67, N 3.82, H 6.55.
- [15] Data for 10: 1 H-NMR (200 MHz, CDCl₃) δ_{H} : 7.22-7.28, 6.84-6.91 (2m, 4 H), 4.75 (d, 3 J=5.8, HC(4)), 4.58 (d, 3 J=6, HC(1)), 3.82 (s, MeO), 3.11 (dd, 3 J=9.1, 3 J=4.9, H_{endo}C(5)), 2.56 (dd, 2 J=17.4, 3 J=5.8, H_{exo}C(3)), 2.31 (dd, 2 J=13.4, 3 J=9.1, H_{endo}C(6)), 2.16 (d, 2 J=17.4, H_{endo}C(3)), 1.84 (m, H_{exo}C(6)); HRMS Calcd for C₁₃H₁₄O₃: 218.094292; Found 218.094370.
- [16] Data for 12: m.p. 92°C; 1 H-NMR (400 MHz, C₆D₆) δ_{H} : 7.24, 6.89 (2dm, 3 J=8.7), 4.46 (s, HC(1)), 4.34 (d, 3 J=5.9, HC(4)), 3.45 (s, MeO), 3.00 (d, 3 J=8.9, HC(6)), 2.64 (d, 3 J=8.9, HC(5), NOE with signals at 7.24, 1.38), 1.91 (dd, 2 J=17.4, 3 J=5.9, H_{exo}C(3)), 1.38 (d, 2 J=17.4, H_{endo}C(3)), 0.02 (s, Me₃Si); HRMS Calcd for C₁₈H₂₂O₃Si: 314.133821; Found: 314.133722. Data for 13: 1 H-NMR (400 MHz, C₆D₆) δ_{H} : 7.20, 6.83 (2dm, 3 J=8.7), 4.56 (d, 3 J=5.9, HC(4)); 4.33 (s, HC(1)), 3.42 (s, MeO), 2.98 (d, 3 J=8.9, HC(6), NOE with 7.20), 2.71 (d, 3 J=8.9, HC(5), NOE with H_{endo}C(3)), 1.90 (dd, 2 J=17.4, 3 J=5.9, H_{exo}C(3)), 1.40 (d, 2 J=17.4, H_{endo}C(3)), 0.03 (s, Me₃Si).
- [17] Data for **16**: m.p. 150°C; ¹H-NMR (400 MHz, C_6D_6) δ_H : 7.16 (dd, 3J =15.7, 9.8), 5.77 (d, 3J =15.7), 5.12 (s, HC(1)), 3.72 (d, 3J =5.9, HC(4)), 3.52 (s, MeOOC), 3.05 (d, 3J =8.4, HC(6)), 2.19 (dd, 2J =14.1, 3J =5.9, $H_{exo}C(3)$), 1.95 (dd, 3J =9.8, 8.4, HC(5), NOE with signals at 7.16, 1.03), 1.46 (s, Ac), 1.03 (d, 2J =14.1, $H_{endo}C(3)$), 0.20 (s, Me₃Si); Anal. Calcd for $C_{18}H_{23}O_5SiN$: C 59.81, N 3.88, H 6.41; Found: C 59.72, N 3.87, H 6.47. Data for **17**: m.p. 107°C; ¹H-NMR (400 MHz, C_6D_6) δ_H : 7.18 (dd), 5.79 (d), 4.64 (s), 4.16 (d), 3.47 (s, MeO), 2.57 (dd, NOE with signal at 7.18), 2.28 (d, NOE with $H_{endo}C(3)$), 2.06 (dd), 1.36 (s, Ac), 0.98 (d), 0.21 (s, Me₃Si); Anal. Calcd for $C_{18}H_{23}O_5SiN$: C 59.81, N 3.88, H 6.41; Found: C 59.86, N 3.83, H 6.32.
- [18] Data for **20**: 1 H-NMR (400 MHz, $C_{6}D_{6}$) δ_{H} : 7.21 (dd, ^{3}J =15.7, 10.0), 5.74 (d, ^{3}J =15.7), 4.32 (s, HC(1)), 3.92 (d, ^{3}J =6.1, HC(4), NOE with HC(5)), 3.53 (s, MeOOC), 2.70 (d, ^{3}J =8.6, HC(6)), 1.94 (dd, ^{3}J =10.0, 8.6, HC(5), NOE with HC(4)), 1.77 (ddm, ^{2}J =17.5, ^{3}J =6.1, $H_{exo}C(3)$), 1.18 (d, ^{2}J =17.5, $H_{endo}C(3)$), 0.20 (s, Me₃Si); HRMS Calcd for $C_{15}H_{20}O_{4}Si$: 292.113085; Found: 292.112976. Data for **21**: 1 H-NMR (400 MHz, $C_{6}D_{6}$) δ_{H} : 7.19 (dd, ^{3}J =15.6, 9.8), 5.69 (d, ^{3}J =15.6), 4.38 (d, ^{3}J =6.0, HC(4)), 3.82 (s, HC(1), NOE with HC(6)), 3.49 (s, COOMe), 2.35 (d, ^{3}J =8.6, HC(5), NOE with HC(4)), 2.24 (dd, ^{3}J =9.8, 8.6, HC(6)), 1.75 (dd, ^{3}J =6.0, ^{2}J =17.5, $H_{exo}C(3)$), 1.19 (d, ^{2}J =17.5, $H_{endo}C(3)$), 0.24 (s, SiMe₃); HRMS Calcd for $C_{15}H_{20}O_{4}Si$: 292.113085; Found: 292.113257.
- [19] For reactions with strong electron-demand the homoconjugated carbonyl group can be electron-releasing, see e.g.: Carrupt, P.-A.; Vogel, P. J. Org. Chem. 1990, 55, 5696-5700.